Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 2247]
На сторонах квадрата отложили четыре равных отрезка (как на рисунке). Докажите, что два отмеченных угла равны.
|
|
Сложность: 3+ Классы: 8,9,10
|
В выпуклом четырёхугольнике ABCD ∠A = ∠В = 60° и ∠СAВ = ∠CBD. Докажите, что AD + CB = AB.
На стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что KB = LC. Отрезки AL и CK пересекаются в точке P.
Докажите, что отрезки DP и KL перпендикулярны.
|
|
Сложность: 3+ Классы: 8,9,10
|
Есть бумажный квадрат со стороной 2. Можно ли вырезать из него 12-угольник, у которого длины всех сторон равны 1, а все углы кратны 45°?
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник АВСD – вписанный. Лучи АВ и DС пересекаются в точке M, а лучи ВС и AD –
в точке N. Известно, что ВМ = DN.
Докажите, что CM = CN.
Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 2247]