Страница:
<< 99 100 101 102
103 104 105 >> [Всего задач: 563]
|
|
Сложность: 4 Классы: 8,9,10
|
Через точку пересечения высот остроугольного треугольника ABC
проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На стороне AB треугольника ABC взяты такие точки X,
Y, что AX = BY. Прямые CX и CY вторично пересекают описанную окружность треугольника в точках U и V. Докажите, что все прямые UV проходят через одну точку.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри,
равны. Верно ли, что ABCD – квадрат?
|
|
Сложность: 4+ Классы: 10,11
|
Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным.
На сторонах AB, BC и CA треугольника ABC (или
на их продолжениях) взяты точки C1, A1 и B1 так, что ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α. Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что:
а) точка пересечения высот треугольника ABC совпадает
с центром описанной окружности треугольника A'B'C';
б) треугольники A'B'C' и ABC подобны, причём коэффициент подобия равен 2 cos α.
Страница:
<< 99 100 101 102
103 104 105 >> [Всего задач: 563]