ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 488]      



Задача 58063

Тема:   [ Наименьшая или наибольшая площадь (объем) ]
Сложность: 4+
Классы: 8,9

Многоугольник M' гомотетичен многоугольнику M с коэффициентом гомотетии -1/2. Докажите, что существует параллельный перенос, переводящий многоугольник M' внутрь многоугольника M.
Прислать комментарий     Решение


Задача 78105

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Неравенство треугольника ]
[ Произвольные многоугольники ]
Сложность: 4+
Классы: 9,10

Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник.
Прислать комментарий     Решение


Задача 78220

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 11

Даны числа $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, причём для всех натуральных нечётных n имеет место равенство

$\displaystyle \alpha_{1}^{n}$ + $\displaystyle \alpha_{2}^{n}$ + ... + $\displaystyle \alpha_{k}^{n}$ = 0.

Доказать, что те из чисел $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, которые не равны нулю, можно разбить на пары таким образом, чтобы два числа, входящие в одну и ту же пару, были бы равны по абсолютной величине, но противоположны по знаку.
Прислать комментарий     Решение

Задача 78250

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 9,10,11

На плоскости дано N точек, никакие три из которых не лежат на одной прямой. Если A, B, C — любые три из них, то внутри треугольника ABC нет ни одной точки из данных. Доказать, что эти точки можно занумеровать так, что многоугольник A1A2...An будет выпуклым.
Прислать комментарий     Решение


Задача 105165

Темы:   [ Принцип крайнего (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 4+
Классы: 9,10,11

По периметру круглого торта диаметром n/p метров расположены n вишенок. Если на концах некоторой дуги находятся вишенки, то количество остальных вишенок на этой дуге меньше, чем длина дуги в метрах. Докажите, что торт можно разрезать на n равных секторов так, что в каждом куске будет по вишенке.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .