Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?

Вниз   Решение


Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.

ВверхВниз   Решение


Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 189]      



Задача 110262

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Пусть A – некоторая точка пространства, B – ортогональная проекция точки A на плоскость α , l – некоторая прямая этой плоскости. Докажите, что ортогональные проекции точек A и B на эту прямую совпадают.
Прислать комментарий     Решение


Задача 110263

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m .
Прислать комментарий     Решение


Задача 110264

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M в пространстве равноудалена от вершин плоского многоугольника. Докажите, что этот многоугольник является вписанным, причём центр его описанной окружности есть ортогональная проекция точки M на плоскость многоугольника.
Прислать комментарий     Решение


Задача 110265

Темы:   [ Перпендикулярность прямой и плоскости ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Все боковые рёбра пирамиды равны b , а высота равна h . Найдите радиус описанной около основания окружности.
Прислать комментарий     Решение


Задача 110449

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .