Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 829]
|
|
Сложность: 4 Классы: 10,11
|
Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
а) касательная l2, проведённая к Ω2 в точке R, параллельна AK.;
б) прямые l1, l2 и K имеют общую точку.
Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB.
Докажите, что все прямые l проходят через одну точку.
В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что AB = A1B1, CD = C1D1 и ∠ADC = ∠A1D1C1.
Докажите, что треугольники ABC и A1B1C1 равны.
Дан вписанный четырёхугольник ABCD. Точки P и Q
симметричны точке C относительно прямых AB и AD
соответственно.
Докажите, что прямая PQ проходит через ортоцентр H треугольника ABD.
Четырёхугольник ABCD – вписанный, K – середина той дуги AD , где нет других вершин четырёхугольника. Пусть X и Y – точки пересечения прямых BK и CK с диагоналями. Докажите, что прямая XY параллельна AD.
Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 829]