Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 355]
В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.
На плоскости даны две пересекающиеся окружности. Точка A – одна из двух точек пересечения. В каждой окружности проведён диаметр, параллельный касательной в точке A к другой окружности, причём эти диаметры не пересекаются. Докажите, что концы этих диаметров лежат на одной окружности.
Дан вписанный четырёхугольник ABCD, в котором ∠ABC + ∠ABD = 90°. На диагонали BD отмечена точка E, причём BE = AD. Из неё на сторону AB опущен перпендикуляр EF. Докажите, что CD + EF < AC.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Лист железа треугольной формы весит 900 г.
Доказать, что любая прямая, проходящая через его центр тяжести, делит треугольник на части, каждая из которых весит не менее 400 г.
|
|
|
Сложность: 4- Классы: 10,11
|
В основании A1A2...An
пирамиды SA1A2...An лежит точка O, причём SA1 = SA2 = ... = SAn и ∠SA1O = ∠SA2O = ... = ∠SAnO.
При каком наименьшем значении n отсюда следует, что SO – высота пирамиды?
Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 355]