ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 401]      



Задача 53132

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.

Прислать комментарий     Решение


Задача 54690

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Задачи на проценты и отношения ]
Сложность: 4-
Классы: 8,9

Точка M лежит вне окружности радиуса R и удалена от центра на расстояние d. Докажите, что для любой прямой, проходящей через точку M и пересекающей окружность в точках A и B, произведение MA . MB одно и то же. Чему оно равно?

Прислать комментарий     Решение


Задача 55495

Темы:   [ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Через точку M, расположенную на диаметре окружности радиуса 4, проведена хорда AB, образующая с диаметром угол 30o. Через точку B проведена хорда BC, перпендикулярная данному диаметру. Найдите площадь треугольника ABC, если AM : MB = 2 : 3.

Прислать комментарий     Решение


Задача 101893

Темы:   [ Диаметр, основные свойства ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Пятиугольник ABCDE вписан в окружность. Найдите её длину, если BC = CE, площадь треугольника ADE равна площади треугольника CDE, площадь треугольника ABC равна площади треугольника BCD, а 3AC + 2BD = 5$ \sqrt{5}$.
Прислать комментарий     Решение


Задача 109010

Темы:   [ Диаметр, основные свойства ]
[ Окружности (построения) ]
[ Построение треугольников по различным элементам ]
Сложность: 4-
Классы: 8,9

Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .