Страница:
<< 36 37 38 39 40 41 42 [Всего задач: 207]
|
|
Сложность: 8+ Классы: 10,11
|
Даны две концентрические окружности. Каждая из окружностей
b1 и
b2 касается внешним образом одной окружности и внутренним –
другой, а каждая из окружностей
c1 и
c2 касается внутренним
образом обеих окружностей. Докажите, что
8
точек, в которых
окружности
b1 ,
b2 пересекают
c1 ,
c2 , лежат на двух
окружностях, отличных от
b1 ,
b2 ,
c1 ,
c2 . (Некоторые из этих окружностей могут выродиться в прямые.)
|
|
Сложность: 5- Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AB, BC и CD равны,
M – середина стороны AD. Известно, что ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.
Страница:
<< 36 37 38 39 40 41 42 [Всего задач: 207]