Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 1006]
|
|
Сложность: 5 Классы: 9,10,11
|
С четырёх сторон шахматной доски размером n×n построена кайма шириной в два поля. Докажите, что кайму можно обойти шахматным конём, побывав на каждом поле один и только один раз, в тех и только тех случаях, когда n – 1 кратно 4.
|
|
Сложность: 5 Классы: 9,10,11
|
По одной стороне бесконечного коридора расположено бесконечное количество
комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В
комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов),
кроме того, в каждой комнате находится по роялю. Каждый день какие-то два
пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)
|
|
Сложность: 5 Классы: 8,9,10
|
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.
|
|
Сложность: 5 Классы: 9,10,11
|
В стране N 1998 городов, и из каждого осуществляются беспосадочные
перелеты в три других города (все авиарейсы двусторонние). Известно, что
из каждого города, сделав несколько пересадок, можно долететь до любого
другого. Министерство Безопасности хочет объявить закрытыми 200 городов,
никакие два из которых не соединены авиалинией. Докажите, что это можно
сделать так, чтобы можно было долететь из каждого незакрытого города в
любой другой, не делая пересадок в закрытых городах.
|
|
Сложность: 5 Классы: 9,10,11
|
В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k (2 ≤ k ≤ N) при любом выборе k городов количество авиалиний между этими городами не будет превосходить 2k – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что
не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 1006]