ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 110027

Темы:   [ Неравенство Коши ]
[ Иррациональные неравенства ]
Сложность: 4+
Классы: 8,9,10

Автор: Храбров А.

Для неотрицательных чисел x и y, не превосходящих 1, докажите, что  

Прислать комментарий     Решение

Задача 109761

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Иррациональные неравенства ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Автор: Храбров А.

Докажите, что для любого натурального числа  n > 10000  найдётся такое натуральное число m, представимое в виде суммы двух квадратов, что
 0 < m – n < 3 .

Прислать комментарий     Решение

Задача 109838

Темы:   [ Тригонометрические неравенства ]
[ Иррациональные неравенства ]
[ Возрастание и убывание. Исследование функций ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 10,11

Докажите, что sin< при 0<x< .
Прислать комментарий     Решение


Задача 104092

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Числовые неравенства. Сравнения чисел. ]
[ Иррациональные неравенства ]
Сложность: 3
Классы: 8,9,10

Сравните без помощи калькулятора числа:  .

Прислать комментарий     Решение

Задача 110162

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Неравенства с модулями ]
[ Иррациональные неравенства ]
Сложность: 4-
Классы: 9,10,11

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .