Страница:
<< 126 127 128 129
130 131 132 >> [Всего задач: 1221]
|
|
Сложность: 4- Классы: 8,9,10,11
|
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?
|
|
Сложность: 4- Классы: 7,8,9
|
В коробке лежит полный набор костей домино. Два игрока по очереди выбирают
из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной
цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не
может сделать очередной ход. Кто выиграет при правильной игре?
|
|
Сложность: 4- Классы: 8,9,10
|
В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города A статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих A с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.
|
|
Сложность: 4- Классы: 8,9,10
|
На отрезке [0, 2002] отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?
|
|
Сложность: 4- Классы: 7,8,9,10
|
По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?
Страница:
<< 126 127 128 129
130 131 132 >> [Всего задач: 1221]