Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 500]
|
|
Сложность: 5 Классы: 8,9,10,11
|
Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
|
|
Сложность: 5 Классы: 9,10,11
|
Хорда $DE$ описанной около треугольника $ABC$ окружности пересекает стороны $AB$ и $BC$ в точках $P$ и $Q$ соответственно, точка $P$ лежит между $D$ и $Q$. В треугольниках $ADP$ и $QEC$ провели биссектрисы $DF$ и $EG$. Оказалось, что точки $D$, $F$, $G$, $E$ лежат на одной окружности. Докажите, что точки $A$, $P$, $Q$, $C$ лежат на одной окружности.
На стороне AD вписанного в окружность четырёхугольника
ABCD находится центр окружности, касающейся трёх других
сторон четырёхугольника. Найдите AD, если AB = 2 и
CD = 3.
|
|
Сложность: 5+ Классы: 9,10,11
|
Пусть

=

/7. Докажите,
что

=

+

.
|
|
Сложность: 6- Классы: 9,10,11
|
Пусть
ABCD – вписанный четырёхугольник,
O –
точка пересечения диагоналей
AC и
BD . Пусть окружности,
описанные около треугольников
ABO и
COD , пересекаются в
точке
K . Точка
L такова, что треугольник
BLC подобен
треугольнику
AKD . Докажите, что если четырёхугольник
BLCK
выпуклый, то он он является описанным.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 500]