ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что  AM = BN = AC.  Точка X на луче CA такова, что  MX = AB  Найдите угол MXN.

   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 500]      



Задача 67129

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Теорема Птолемея ]
Сложность: 5
Классы: 8,9,10,11

Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
Прислать комментарий     Решение


Задача 67415

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 9,10,11

Хорда $DE$ описанной около треугольника $ABC$ окружности пересекает стороны $AB$ и $BC$ в точках $P$ и $Q$ соответственно, точка $P$ лежит между $D$ и $Q$. В треугольниках $ADP$ и $QEC$ провели биссектрисы $DF$ и $EG$. Оказалось, что точки $D$, $F$, $G$, $E$ лежат на одной окружности. Докажите, что точки $A$, $P$, $Q$, $C$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 52522

Темы:   [ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

На стороне AD вписанного в окружность четырёхугольника ABCD находится центр окружности, касающейся трёх других сторон четырёхугольника. Найдите AD, если AB = 2 и CD = 3.

Прислать комментарий     Решение


Задача 57047

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема Птолемея ]
[ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 5+
Классы: 9,10,11

Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.
Прислать комментарий     Решение


Задача 108139

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Конкуррентность высот. Углы между высотами. ]
[ Биссектриса угла (ГМТ) ]
Сложность: 6-
Классы: 9,10,11

Пусть ABCD – вписанный четырёхугольник, O – точка пересечения диагоналей AC и BD . Пусть окружности, описанные около треугольников ABO и COD , пересекаются в точке K . Точка L такова, что треугольник BLC подобен треугольнику AKD . Докажите, что если четырёхугольник BLCK выпуклый, то он он является описанным.
Прислать комментарий     Решение


Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 500]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .