ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 694]      



Задача 110742

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

Плоскости диагональных сечений пирамиды, основанием которой является параллелограмм, взаимно перпендикулярны. Докажите, что суммы квадратов площадей противоположных боковых граней равны между собой.
Прислать комментарий     Решение


Задача 110743

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Известно, что плоскости треугольников ASC и BSD перпендикулярны друг другу. Найдите площадь грани ASD , если площади граней ASB , BSC и CSD равны соответственно 5, 6 и 7.
Прислать комментарий     Решение


Задача 110744

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды SKLMN лежит параллелограмм KLMN . Известно, что плоскости треугольников SKM и SLN перпендикулярны друг другу. Найдите площадь грани NSK , если площади граней KSL , LSM и MSN равны соответственно 4, 6 и 7.
Прислать комментарий     Решение


Задача 110935

Темы:   [ Углы между прямыми и плоскостями ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

Высота правильной четырёхугольной пирамиды SABCD ( S – вершина) в раз больше ребра основания. Точка E – середина апофемы, лежащей в грани ASB . Найдите угол между прямой DE и плоскостью ASC .
Прислать комментарий     Решение


Задача 110936

Темы:   [ Углы между прямыми и плоскостями ]
[ Прямоугольные параллелепипеды ]
Сложность: 4
Классы: 8,9

Дан прямоугольный параллелепипед ABCDA1B1C1D1 . Точки E и G – середины отрезков A1B1 и DC1 соответственно, точка F лежит на отрезке BE , причём 3BF=BE . Найдите угол между прямой FG и плоскостью AA1C1 , если известно, что AB=AD , AA1=AB .
Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .