ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Основанием призмы ABCDA1B1C1D1 служит трапеция ABCD , в которой AB || CD , CD:AB=n<1 . Диагональ AC1 пересекает диагонали A1C и D1B соответственно в точках M и N , а диагональ DB1 пересекает диагонали A1C и D1B соответственно в точках Q и P . Известно, что MNPQ – правильный тетраэдр. Найдите отношение объёма тетраэдра к объёму призмы. Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что A'K = B'K. На стороне AC треугольника ABC взята точка E. Через точку E
проведены прямая DE параллельно стороне BC и прямая EF параллельно
стороне AB (D и E — точки соответственно на этих сторонах).
Докажите, что
SBDEF = 2 |
Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 540]
Точки O и O1 – соответственно центры оснований ABCD и A1B1C1D1 правильной четырёхугольной призмы. Правильный восьмиугольник, четыре вершины которого совпадают с серединами сторон квадрата ABCD , служит основанием пирамиды с вершиной в точке O1 . Найдите объём общей части этой пирамиды и пирамиды OA1B1C1D1 , если объём призмы равен V .
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона
основания пирамиды равна b , а высота пирамиды равна b
Шар, вписанный в правильную пирамиду ABCD , касается грани ADC в
точке K . Через сторону AB основания ABC пирамиды и точку K
проведено сечение. Найдите площадь этого сечения, если сторона основания
пирамиды равна b , а высота пирамиды равна b
Bсе ребра правильной четырехугольной пирамиды равны 1, а все вершины лежат на боковой поверхности (бесконечного) прямого кругового цилиндра радиуса R. Найдите все возможные значения R.
Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 540]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке