ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 209]      



Задача 116099

Темы:   [ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
[ Вписанный угол равен половине центрального ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

На окружности, описанной около прямоугольника ABCD , выбрана точка K . Оказалось, что прямая CK пересекает отрезок AD в точке M такой, что AM:MD=2 . Пусть O — центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на окружности, описанной около треугольника COD .
Прислать комментарий     Решение


Задача 56887

Темы:   [ Вписанные и описанные окружности ]
[ Периметр треугольника ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанный угол равен половине центрального ]
[ Средняя линия треугольника ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4+
Классы: 8,9

Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 55606

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
[ Осевая и скользящая симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

На плоскости дан треугольник ABC и точка M. Известно, что точки, симметричные точке M относительно двух сторон треугольника ABC попадают на окружность, описанную около треугольника ABC. Докажите, что точка, симметричная точке M относительно третьей стороны, также попадает на эту окружность.

Прислать комментарий     Решение


Задача 111719

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Биссектриса делит дугу пополам ]
[ Признаки и свойства параллелограмма ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9,10

Прямая, соединяющая центр описанной окружности и точку пересечения высот неравнобедренного треугольника, параллельна биссектрисе одного из его углов. Чему равен этот угол?
Прислать комментарий     Решение


Задача 110783

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Четырехугольники (построения) ]
[ Вписанный угол равен половине центрального ]
[ Хорды и секущие (прочее) ]
Сложность: 6
Классы: 9,10

На доске был нарисован четырехугольник, в который можно вписать и около которого можно описать окружность. В нем отметили центры этих окружностей и точку пересечения прямых, соединяющих середины противоположных сторон, после чего сам четырехугольник стерли. Восстановите его с помощью циркуля и линейки.
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .