Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 352]
Дан параллелограмм ABCD, в котором AB = a, AD = b. Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная
окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение M1N1 : M2N2?
Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как 4 : 2 : 1. Докажите, что A1B1 = A1C1.
В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности,
проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.
|
|
Сложность: 4 Классы: 10,11
|
B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что MT || BC и NT || AB. Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.
Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 352]