ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 329]      



Задача 58343

Темы:   [ Инверсия помогает решить задачу ]
[ Окружности, вписанные в сегмент ]
[ Касающиеся окружности ]
[ Радикальная ось ]
[ Признаки и свойства касательной ]
Сложность: 5
Классы: 9,10,11

В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).
Прислать комментарий     Решение


Задача 58346

Темы:   [ Инверсия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Пересекающиеся окружности ]
Сложность: 5
Классы: 9,10,11

Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) S1 в точках B1 и C1, а окружности (или прямой) S2 в точках B2 и C2 (причем касание в B2 и C2 такое же, как в B1 и C1). Докажите, что окружности, описанные вокруг треугольников AB1C1 и AB2C2, касаются друг друга.
Прислать комментарий     Решение


Задача 110780

Темы:   [ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
Сложность: 5+
Классы: 9,10,11

Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.
Прислать комментарий     Решение


Задача 115974

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
Сложность: 2+
Классы: 7,8,9

Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

Прислать комментарий     Решение

Задача 115697

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Отношение радиусов окружностей S1 и S2 , касающихся в точке B , равно k ( k>1 ). Из точки A , лежащей на окружности S1 , проведена прямая, касающаяся окружности S2 в точке C . Найдите AC , если известно, что хорда, высекаемая окружностью S2 на прямой AB , равна b .
Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .