ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



Задача 66709

Темы:   [ Теоремы Чевы и Менелая ]
[ Вписанные четырехугольники (прочее) ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.

Прислать комментарий     Решение

Задача 110791

Темы:   [ Гомотетичные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Касающиеся окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4+
Классы: 9,10,11

Дана окружность, точка A на ней и точка M внутри нее. Рассматриваются хорды BC , проходящие через M . Докажите, что окружности, проходящие через середины сторон всех треугольников ABC , касаются некоторой фиксированной окружности.
Прислать комментарий     Решение


Задача 66976

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Прямая Гаусса ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Автор: Dadgarnia A.

Четырехугольник $ABCD$ описан около окружности $\omega$ с центром $I$. Прямые $AC$ и $BD$ пересекаются в точке $P$, $AB$ и $CD$ – в точке $E$, $AD$ и $BC$ – в точке $F$. Точка $K$ на описанной окружности треугольника $EIF$ такова, что $\angle IKP=90^{\circ}$. Луч $PK$ пересекает $\omega$ в точке $Q$. Докажите, что описанная окружность треугольника $EQF$ касается $\omega$.
Прислать комментарий     Решение


Задача 108221

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Касающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 5-
Классы: 9,10,11

В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой.
Прислать комментарий     Решение


Задача 66926

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .