Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 499]
Отрезки AA1, BB1 и CC1 – высоты треугольника ABC. Найдите углы этого треугольника, если известно, что он подобен треугольнику A1B1C1.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.
В треугольнике ABC: ∠C = 60°, ∠A = 45°. Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.
Внутри равнобедренного прямоугольного треугольника ABC с гипотенузой AB взята такая точка M, что угол MAB на 15° больше угла MAC, а угол MCB на 15° больше угла MBC. Найдите угол BMC.
|
|
Сложность: 4 Классы: 8,9,10
|
В неравнобедренном треугольнике ABC провели биссектрисы угла ABC и угла, смежного с ним. Они пересекли прямую AC в точках B1 и B2 соответственно. Из точек B1 и B2 провели касательные к окружности ω, вписанной
в треугольник ABC, отличные от прямой AC. Они касаются ω в точках K1 и K2 соответственно. Докажите, что точки B, K1 и K2 лежат на одной прямой.
Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 499]