Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 31]
|
|
Сложность: 6- Классы: 9,10,11
|
На плоскости отмечены все точки с целыми координатами
(
x,y)
такие,
что
x2+y2 10
10
. Двое играют в игру (ходят по очереди).
Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и
стирает ее. Затем каждым очередным ходом игрок переносит фишку в
какую-то другую отмеченную точку и стирает ее. При этом длины ходов
должны все время увеличиваться; кроме того, запрещено делать ход из
точки в симметричную ей относительно центра. Проигрывает тот, кто не может
сделать ход. Кто из играющих может обеспечить себе победу, как бы ни
играл его соперник?
Из произвольной внутренней точки
O выпуклого
n-угольника опущены
перпендикуляры на стороны (или их продолжения). На каждом перпендикуляре от
точки
O по направлению к стороне построен вектор, длина которого равна
половине длины той стороны, на которую опущен перпендикуляр. Определить сумму
построенных векторов.
На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно
точки N, K, L, M, делящие эти стороны в одном и том же отношении
(при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.
В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Докажите, что AK = DM + BK.
С помощью циркуля и линейки впишите квадрат в данный
параллелограмм.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 31]