Страница:
<< 79 80 81 82
83 84 85 >> [Всего задач: 499]
Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и
Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.
|
|
Сложность: 4 Классы: 10,11
|
B основании четырёхугольной пирамиды SABCD лежит четырёхугольник
ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.
|
|
Сложность: 4 Классы: 10,11
|
Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что BP = CP.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что MT || BC и NT || AB. Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.
|
|
Сложность: 4 Классы: 8,9,10
|
В окружность Ω вписан остроугольный треугольник ABC, в котором AB > BC. Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.
Страница:
<< 79 80 81 82
83 84 85 >> [Всего задач: 499]