Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по ненулевому числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Вниз   Решение


Найдите периметр треугольника ABC, если известны координаты его вершин  A(–3, 5),  B(3, –3)  и точки  M(6, 1),  являющейся серединой стороны BC.

Вверх   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1015]      



Задача 103986

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 6,7,8

На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

Прислать комментарий     Решение

Задача 108978

Темы:   [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9

Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).

Прислать комментарий     Решение

Задача 109436

Темы:   [ Количество и сумма делителей числа ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.

Прислать комментарий     Решение

Задача 109631

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 3
Классы: 9

Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?

Прислать комментарий     Решение

Задача 111644

Темы:   [ Арифметическая прогрессия ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

Прислать комментарий     Решение

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1015]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .