ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 9702]      



Задача 116986

Темы:   [ Векторы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Прислать комментарий     Решение

Задача 32067

Темы:   [ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7,8

Верно ли, что из любых 10 отрезков найдутся три, из которых можно составить треугольник?

Прислать комментарий     Решение


Задача 35425

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Укажите неравносторонний треугольник, который можно разделить на три равных треугольника.

Прислать комментарий     Решение

Задача 35542

Тема:   [ Построения (прочее) ]
Сложность: 2+
Классы: 8,9

Как одним циркулем удвоить отрезок?
Прислать комментарий     Решение


Задача 35576

Тема:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 2+
Классы: 9,10

Треугольник имеет площадь, равную 1. Докажите, что длина его средней по длине стороны не меньше, чем $\sqrt {2}$.
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .