Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 509]
|
|
|
Сложность: 3 Классы: 6,7,8
|
В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.
Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.
Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.
|
|
|
Сложность: 3 Классы: 8,9,10
|
Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 509]