Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На отрезке длины 1 отмечено несколько интервалов. Известно, что расстояние между любыми двумя точками, принадлежащими одному или разным интервалам, отлично от 0,1. Докажите, что сумма длин отмеченных интервалов не превосходит 0,5.

Вниз   Решение


а) На столе лежат 5 одинаковых бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Верно ли, что всегда каждый из этих треугольников можно накрыть четырьмя другими?
б) На столе лежат 5 одинаковых равносторонних бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Докажите, что каждый из этих треугольников можно накрыть четырьмя другими.

ВверхВниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что  AK + LC = KL.  Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.

ВверхВниз   Решение


Пусть имеется n подмножеств A1, ..., An конечного множества E и $ \chi_{j}^{}$(x)  — характеристические функции этих множеств, то есть

$\displaystyle \chi_{j}^{}$(x) = \begin{displaymath}\begin{cases}
1,& x\in A_j,\\ 0,& x\in E\setminus A_j
\end{cases}\end{displaymath}(j = 1,..., n).


Докажите, что при этом $ \chi$(x) — характеристическая функция множества A = A1 $ \cup$...$ \cup$ An, связана с функциями $ \chi_{1}^{}$(x), ..., $ \chi_{n}^{}$(x) формулой

1 - $\displaystyle \chi$(x) = (1 - $\displaystyle \chi_{1}^{}$(x))...(1 - $\displaystyle \chi_{n}^{}$(x)).


Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1282]      



Задача 56560

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

На окружности взяты точки  A, C1, B, A1, C, B1 в указанном порядке.
а) Докажите, что если прямые AA1, BB1 и CC1 являются биссектрисами углов треугольника ABC, то они являются высотами треугольника A1B1C1.
б) Докажите, что если прямые AA1, BB1 и CC1 являются высотами треугольника ABC, то они являются биссектрисами углов треугольника A1B1C1.
Прислать комментарий     Решение


Задача 56564

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена касательная AQ к окружности S1 (точка Q лежит на S2), а через точку B -- касательная BS к окружности S2 (точка S лежит на S1). Прямые BQ и AS пересекают окружности S1 и S2 в точках R и P. Докажите, что PQRS — параллелограмм.
Прислать комментарий     Решение


Задача 56565

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.
Прислать комментарий     Решение


Задача 56566

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.
Прислать комментарий     Решение


Задача 56567

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Две окружности пересекаются в точках A и B. Из точки A к этим окружностям проведены касательные AM и AN (M и N — точки окружностей). Докажите, что:
а)  $ \angle$ABN + $ \angle$MAN = 180o;
б)  BM/BN = (AM/AN)2.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .