Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 1275]
AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
а) треугольник AA1C подобен треугольнику BB1C;
б) треугольник ABC подобен треугольнику A1B1C.
в) Найдите коэффициент подобия треугольников A1B1C и ABC, если ∠C = γ.
В круговой сегмент AMB вписана трапеция ACDB, у которой
AC = CD и
CAB = 51o20'. Найдите угловую
величину дуги AMB.
Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.
Через вершину A остроугольного треугольника ABC проведена
прямая, параллельная стороне BC, равной a, и пересекающая
окружности, построенные на сторонах AB и AC как на диаметрах, в
точках M и N, отличных от A. Найдите MN.
В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Докажите, что треугольник MNQ – равносторонний.
Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 1275]