Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 1275]
На продолжении хорды KL окружности с центром O взята точка
A, и из неё проведены касательные AP и AQ (P и Q – точки касания); M – середина отрезка PQ. Докажите, что ∠MKO = ∠MLO.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?
Докажите, что если ортоцентр делит высоты треугольника в одном и том же
отношении, то этот треугольник — правильный.
|
|
Сложность: 3 Классы: 8,9,10
|
Треугольник
ABC вписан в окружность. Точка
D — середина дуги
AC, точки
K и
L выбраны на сторонах
AB и
CB соответственно так, что
KL параллельна
AC. Пусть
K' и
L' — точки пересечения прямых
DK и
DL соответственно с окружностью. Докажите, что вокруг четырехугольника
KLL'
K' можно описать окружность.
В окружности проведены две пересекающиеся хорды
AB и
CD . На отрезке
AB взяли точку
M так, что
AM=AC , а на отрезке
CD – точку
N
так, что
DN=DB . Докажите, что если точки
M и
N не совпадают, то
прямая
MN параллельна прямой
AD .
Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 1275]