Страница:
<< 147 148 149 150
151 152 153 >> [Всего задач: 1275]
|
|
Сложность: 3 Классы: 8,9,10
|
Две окружности проходят через вершину угла и точку его биссектрисы. Докажите, что отрезки, высекаемые ими на сторонах угла, равны.
|
|
Сложность: 3 Классы: 7,8,9
|
В окружности с центром O проведена хорда AB и радиус OK,
пересекающий её под прямым углом в точке M. На большей дуге AB
окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что KR > MQ.
В четырёхугольнике есть два прямых угла, а его диагонали равны. Верно ли, что он является прямоугольником?
Из произвольной точки M внутри острого угла с вершиной A
опущены перпендикуляры MP и MQ на его стороны. Из вершины A
проведён перпендикуляр AK на PQ. Докажите, что
PAK = MAQ.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан прямоугольный треугольник $ABC$ с прямым углом $C$, вне треугольника взята точка $D$, так что $\angle ADC=\angle BAC$ и отрезок $CD$ пересекает гипотенузу $AB$ в точке $E$. Известно, что расстояние от точки $E$ до катета $AC$ равно радиусу описанной окружности треугольника $ADE$. Найдите углы треугольника $ABC$.
Страница:
<< 147 148 149 150
151 152 153 >> [Всего задач: 1275]