ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Точка D – середина гипотенузы AB прямоугольного треугольника ABC с катетами 3 и 4.
Найдите расстояние между центрами вписанных окружностей треугольников ACD и BCD.

Вниз   Решение


Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 64472

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Теорема Птолемея ]
Сложность: 4
Классы: 9,10,11

Дан вписанный четырёхугольник, острый угол между диагоналями которого равен φ. Докажите, что острый угол между диагоналями любого другого четырёхугольника с теми же длинами сторон (идущими в том же порядке) меньше φ.

Прислать комментарий     Решение

Задача 57373

 [Неравенство Птолемея]
Темы:   [ Вспомогательные подобные треугольники ]
[ Четырехугольник (неравенства) ]
[ Теорема Птолемея ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан четырёхугольник ABCD. Докажите, что  AC·BD ≤ AB·CD + BC·AD.

Прислать комментарий     Решение

Задача 64740

Темы:   [ Окружность Аполлония ]
[ Касающиеся окружности ]
[ Теорема Птолемея ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10

Автор: Белухов Н.

В треугольнике ABC  ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.

Прислать комментарий     Решение

Задача 66954

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Теорема Птолемея ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 65879

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .