ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении 2 : 1, считая от вершины. Докажите, что AK и CM – медианы треугольника. В треугольнике ABC основание высоты CD лежит на стороне AB, медиана AE равна 5, высота CD равна 6.
В треугольник ABC со стороной BC, равной 11, вписана
окружность, касающаяся стороны AB в точке D. Известно, что
AC = CD и косинус угла BAC равен
Четыре сферы радиуса 1 попарно касаются. Найдите высоту цилиндра, содержащего эти сферы так, что три из них касаются одного основания и боковой поверхности, а четвёртая – другого основания цилиндра. Найдите наименьшее натуральное число, кратное 99, в десятичной записи которого участвуют только чётные цифры. Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим. По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему). - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской". - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой. Найдите математическое ожидание интервала между поездами, идущими в одном направлении. |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 5294]
Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13.
В треугольнике ABC известно, что AB = 10, BC = 24, а медиана BD равна 13. Окружности, вписанные в треугольники ABD и BDC касаются медианы BD в точках M и N соответственно. Найдите MN.
На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK.
Дан треугольник со сторонами 12, 15, 18. Проведена окружность, касающаяся обеих меньших сторон и имеющая центр на большой стороне. Найдите отрезки, на которые центр окружности делит большую сторону треугольника.
В треугольнике ABC известно, что AC = 13, AB = 14, BC = 15. На стороне BC взята точка M, причём CM : MB = 1 : 2. Найдите AM.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 5294]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке