Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 107]
Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.
Известно, что в равнобедренную трапецию
ABCD с основаниями
AD>BC
можно вписать окружность;
CH – высота трапеции,
AH = 7
. Найдите
боковую сторону трапеции.
Две окружности радиусов и пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что AB = AC (точка B не совпадает с C). Найдите AB.
Прямая l пересекает окружность с диаметром AB в точках C и D, отличных от A и B. Из точек A и B к прямой l проведены перпендикуляры AE и BF соответственно. Докажите, что CE = DF.
|
|
Сложность: 3+ Классы: 8,9,10
|
Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 107]