Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении  2 : 1,  считая от вершины. Докажите, что AK и CM – медианы треугольника.

Вниз   Решение


В треугольнике ABC основание высоты CD лежит на стороне AB, медиана AE равна 5, высота CD равна 6.
Найдите площадь треугольника ABC, если известно, что площадь треугольника ADC в три раза больше площади треугольника BCD.

ВверхВниз   Решение


В треугольник ABC со стороной BC, равной 11, вписана окружность, касающаяся стороны AB в точке D. Известно, что AC = CD и косинус угла BAC равен $ {\frac{1}{6}}$. Найдите AC.

Вверх   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]      



Задача 116186

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Задача 55213

Темы:   [ Неравенства с площадями ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Все биссектрисы треугольника меньше 1. Докажите, что его площадь меньше 1.

Прислать комментарий     Решение


Задача 73581

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Выпуклые многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 7,8,9

Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
Прислать комментарий     Решение


Задача 53618

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

На прямой расположены три точки A, B и C, причём  AB = BC = 3.  Три окружности радиуса R имеют центры в точках A, B и C.
Найдите радиус четвёртой окружности, касающейся всех трёх данных, если   а)  R = 1;   б)  R = 2;   в)  R = 5.

Прислать комментарий     Решение

Задача 55161

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Неравенства с медианами ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Докажите, что в любом треугольнике сумма длин его медиан больше $ {\frac{{3}}{{4}}}$ периметра, но меньше периметра.

Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .