|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
На плоскости даны две окружности одна внутри другой. Построить такую точку O, что одна окружность получается из другой гомотетией относительно точки O (другими словами – чтобы растяжение плоскости от точки O с некоторым коэффициентом переводило одну окружность в другую).
Докажите, что две касающиеся окружности гомотетичны относительно их точки касания.
Найдите геометрическое место середин всех хорд, проходящих через данную точку окружности.
Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую -- в точках C и D. Докажите, что AB || CD.
Найдите геометрическое место середин отрезков, соединяющих данную точку, лежащую вне данной окружности, с точками этой окружности.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|