ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 563]
На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN?
Дан прямоугольный бильярд со сторонами 1 и . Из его угла под углом 45o к стороне выпущен шар. Попадет ли он когда-нибудь в лузу? (Лузы находятся в углах бильярда).
Даны прямые l1, l2 и l3, пересекающиеся в одной точке. С помощью циркуля и линейки постройте треугольник ABC, для которого данные прямые были бы серединными перпендикулярами к его сторонам.
Даны два отрезка с общей вершиной. Внутри получившегося угла, отражаясь от его сторон, "путешествует" луч света. Докажите, что рано или поздно луч выйдет из угла.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|