Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
|
|
Сложность: 5- Классы: 8,9,10
|
Через каждую вершину четырехугольника проведена прямая,
проходящая через центр вписанной в него окружности. Три из этих прямых
обладают тем свойством, что каждая из них делит площадь
четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если
один из них равен
72
o ?
|
|
Сложность: 5- Классы: 8,9,10
|
Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем 1 + .
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
Рассматривается произвольный многоугольник (возможно, невыпуклый).
а) Всегда ли найдётся хорда этого многоугольника, которая делит
его площадь пополам?
б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.
в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется пирог некоторой формы. Докажите, что его можно
разрезать на четыре равные по массе части двумя прямолинейными
перпендикулярными разрезами.
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]