ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL .

Вниз   Решение


Автор: Козлов П.

Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Докажите, что оно также представимо в виде суммы квадратов трёх целых чисел, не делящихся на 3.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 57131

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

Даны две прямые, пересекающиеся в точке O. Найдите ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые постоянна.
Прислать комментарий     Решение


Задача 57132

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

Дан прямоугольник ABCD. Найдите ГМТ X, для которых  AX + BX = CX + DX.
Прислать комментарий     Решение


Задача 57134

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

На плоскости даны точки A и B. Найдите ГМТ M, для которых разность квадратов длин отрезков AM и BM постоянна.
Прислать комментарий     Решение


Задача 52595

Темы:   [ ГМТ - прямая или отрезок ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9

Найдите геометрическое место центров окружностей, касающихся данной окружности в данной на ней точке.

Прислать комментарий     Решение


Задача 54548

Темы:   [ ГМТ - прямая или отрезок ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
[ Гомотетия помогает решить задачу ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .