ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.

Вниз   Решение


В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми).

ВверхВниз   Решение


Найдите все действительные корни уравнения   (x + 1)21 + (x + 1)20(x – 1) + (x + 1)19(x – 1)² + ... + (x – 1)21 = 0.

ВверхВниз   Решение


Укажите все пары  (x; y),  для которых выполняется равенство   (x4 + 1)(y4 + 1) = 4x²y².

ВверхВниз   Решение


Докажите, что  4S = (a2 - (b - c)2)ctg($ \alpha$/2).

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]      



Задача 64737

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Точка Лемуана ]
[ Угол между касательной и хордой ]
[ Подерный (педальный) треугольник ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 5-
Классы: 8,9,10

В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 57218

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5
Классы: 8,9

Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и $ \angle$A.
Прислать комментарий     Решение


Задача 57228

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5
Классы: 8,9

Постройте треугольник ABC по центру описанной окружности O, точке пересечения медиан M и основанию H высоты CH.
Прислать комментарий     Решение


Задача 57229

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5
Классы: 8,9

Постройте треугольник ABC по центрам вписанной, описанной и одной из вневписанных окружностей.
Прислать комментарий     Решение


Задача 57220

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5+
Классы: 8,9

Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .