Версия для печати
Убрать все задачи
Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.

Решение
В пирамиде
ABCD двугранные углы с рёбрами
AB ,
BC и
CA
равны
α1
,
α2
и
α3
соответственно,
а площади треугольников
ABD ,
BCD и
CAD равны соответственно
S1
,
S2
и
S3
. Площадь треугольника
ABC равна
S .
Докажите, что
S = S1
cos α1
+ S2
cos α2
+
S3
cos α3
(некоторые из углов
α1
,
α2
и
α3
могут быть тупыми).


Решение
Найдите все действительные корни уравнения (x + 1)21 + (x + 1)20(x – 1) + (x + 1)19(x – 1)² + ... + (x – 1)21 = 0.


Решение
Укажите все пары (x; y), для которых выполняется равенство (x4 + 1)(y4 + 1) = 4x²y².


Решение
Докажите, что
4
S = (
a2 - (
b -
c)
2)
ctg(

/2).

Решение