ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 58024

Тема:   [ Центр поворотной гомотетии ]
Сложность: 5
Классы: 9

Четыре пересекающиеся прямые образуют четыре треугольника. Докажите, что четыре окружности, описанные около этих треугольников, имеют одну общую точку.
Прислать комментарий     Решение


Задача 58025

Тема:   [ Центр поворотной гомотетии ]
Сложность: 5
Классы: 9

Параллелограмм ABCD отличен от ромба. Прямые, симметричные прямым AB и CD относительно диагоналей AC и DB соответственно, пересекаются в точке Q. Докажите, что Q — центр поворотной гомотетии, переводящей отрезок AO в отрезок OD, где O — центр параллелограмма.
Прислать комментарий     Решение


Задача 58027

Тема:   [ Центр поворотной гомотетии ]
Сложность: 6
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1 так, что $ \triangle$ABC $ \sim$ $ \triangle$A1B1C1. Пары отрезков BB1 и CC1, CC1 и AA1, AA1 и BB1 пересекаются в точках A2, B2 и C2 соответственно. Докажите, что описанные окружности треугольников ABC2, BCA2, CAB2, A1B1C2, B1C1A2 и C1A1B2 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 65936

Темы:   [ Метод координат на плоскости ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Дана окружность с центром в начале координат.
Докажите, что найдётся окружность меньшего радиуса, на которой лежит не меньше точек с целыми координатами.

Прислать комментарий     Решение

Задача 116680

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Рудаков И.

На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .