Страница: 1
2 3 4 5 6 7 >> [Всего задач: 49]
Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4.
|
|
Сложность: 3 Классы: 10,11
|
В пространстве расположен выпуклый многогранник, все вершины которого
находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет.
(Целой называется точка, все три координаты которой – целые числа.)
Доказать, что число вершин многогранника не превосходит восьми.
|
|
Сложность: 3 Классы: 10,11
|
В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дана квадратная сетка на плоскости и треугольник с
вершинами в узлах сетки. Докажите, что тангенс любого угла в
треугольнике — число рациональное.
Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.
Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 49]