ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP. В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$. Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 352]
Дан вписанный четырёхугольник ABCD, в котором ∠ABC + ∠ABD = 90°. На диагонали BD отмечена точка E, причём BE = AD. Из неё на сторону AB опущен перпендикуляр EF. Докажите, что CD + EF < AC.
Лист железа треугольной формы весит 900 г.
В основании A1A2...An
пирамиды SA1A2...An лежит точка O, причём SA1 = SA2 = ... = SAn и ∠SA1O = ∠SA2O = ... = ∠SAnO.
Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.
Дан квадрат ABCD. Точки P и Q лежат на сторонах AB и BC соответственно, причём BP = BQ. Пусть H – основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что угол DHQ – прямой.
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке