ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник. Прямой круговой конус с радиусом основания R и высотой Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности.
На хорде AB окружности K с центром в точке O взята точка C. D —
вторая точка пересечения окружности K с окружностью, описанной около
|
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 289]
Докажите, что при любых вещественных aj, bj (1 ≤ j ≤ n) выполняется неравенство
Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.
Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?
Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 289]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке