Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 416]
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что если положительная квадратичная иррациональность α = разлагается в чисто периодическую цепную дробь, то сопряженная ей квадратичная иррациональность α' = принадлежит интервалу (– 1, 0).
|
|
Сложность: 4 Классы: 8,9,10,11
|
Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.
|
|
Сложность: 4 Классы: 9,10,11
|
Можно ли нарисовать правильный треугольник с вершинами в
узлах квадратной сетки?
[Иррациональность чмсла e]
|
|
Сложность: 4 Классы: 10,11
|
Число e определяется равенством Докажите, что
а)
б) где 0 < rn ≤ 1/n!n;
в) e – иррациональное число.
[Число e и комбинаторика]
|
|
Сложность: 4 Классы: 9,10,11
|
Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если N > [k!e], то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 416]