ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Неравенство
Иенсена. Докажите, что если функция f (x) выпукла вверх на
отрезке [a;b], то для любых различных точек x1, x2,
..., xn (
n
f (
В вершинах куба расставлены числа: 7 нулей и одна единица. За один ход разрешается прибавить по единице к числам в концах любого ребра куба. Можно ли добиться того, чтобы все числа стали равными? А можно ли добиться того, чтобы все числа делились на 3?
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты соответственно точки M, N, K, L, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что при пересечении прямых AN, BK, CL и DM получится параллелограмм, причём его центр совпадает с центром параллелограмма ABCD. Найдите |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 189]
В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.
В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 189]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке