Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли через вершины куба провести 8 параллельных плоскостей так,
чтобы расстояния между соседними плоскостями были равны?
|
|
Сложность: 3+ Классы: 10,11
|
Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую
длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли в пространстве куб, расстояния от вершин которого до данной
плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве проведено n плоскостей. Каждая пересекается ровно с 1999
другими. Найдите все n, при которых это возможно.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 694]