ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1007]      



Задача 64724

Темы:   [ Геометрия на клетчатой бумаге ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше
  а) 15;
  б) 20?
  в) Может ли в аналогичной задаче про квадрат n×n клеток получиться больше чем n²/4 частей (для  n > 8)?

Прислать комментарий     Решение

Задача 64833

Темы:   [ Теория алгоритмов (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

В строку выписаны 40 знаков: 20 крестиков и 20 ноликов. За один ход можно поменять местами любые два соседних знака. За какое наименьшее количество ходов можно гарантированно добиться того, чтобы какие-то 20 стоящих подряд знаков оказались крестиками?

Прислать комментарий     Решение

Задача 65096

Темы:   [ Десятичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?

Прислать комментарий     Решение

Задача 65120

Темы:   [ Правильные многоугольники ]
[ Комбинаторика (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

На плоскости отметили все вершины правильного n-угольника, а также его центр. Затем нарисовали контур этого n-угольника, и центр соединили со всеми вершинами; в итоге n-угольник разбился на n треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких n по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке?

Прислать комментарий     Решение

Задача 65185

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 3+
Классы: 9,10,11

Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)?

Прислать комментарий     Решение

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .