ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 115711

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Геометрия на клетчатой бумаге ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду.
Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для каждого из них.
Прислать комментарий     Решение


Задача 65410

Темы:   [ Площадь и ортогональная проекция ]
[ Параллелограмм Вариньона ]
[ Малые шевеления ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

Прислать комментарий     Решение

Задача 65881

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 9,10,11

Можно ли квадрат со стороной 1 разрезать на две части и покрыть ими какой-нибудь круг диаметра больше 1?

Прислать комментарий     Решение

Задача 66115

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 7,8,9,10

Доминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску
  а) хотя бы 40 доминошек;
  б) хотя бы 41 доминошку;
  в) более 41 доминошки.

Прислать комментарий     Решение

Задача 78573

Темы:   [ Свойства симметрий и осей симметрии ]
[ Свойства симметрии и центра симметрии ]
[ Малые шевеления ]
Сложность: 4+
Классы: 8,9,10

Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые шарик останавливается. Шарик выпускают из одного угла бильярда под углом 45o к стороне. В какой-то момент он попал в середину некоторой стороны. Доказать, что в середине противоположной стороны он побывать не мог.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .