ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1027]      



Задача 64482

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Разложение на множители ]
[ Тригонометрический круг ]
Сложность: 3+
Классы: 10,11

Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?

Прислать комментарий     Решение

Задача 64709

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили.
Мог ли результат оказаться квадратом натурального числа?

Прислать комментарий     Решение

Задача 65462

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
  а)  k = 9;   б)  k = 8?

Прислать комментарий     Решение

Задача 65487

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 10,11

Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100?

Прислать комментарий     Решение

Задача 65823

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Палиндром – это натуральное число, которое читается одинаково слева направо и справа налево (например, 1, 343 и 2002 палиндромы).
Найдутся ли 2005 пар вида  (n, n + 110),  где оба числа – палиндромы?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .