Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 239]
Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.
Выпуклый шестиугольник A1A2...A6 описан около окружности ω радиуса 1. Рассмотрим три отрезка, соединяющие середины противоположных сторон шестиугольника. Для какого наибольшего r можно утверждать, что хотя бы один из этих отрезков не короче r?
Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать,
что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что A3B4 || AB.
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k. Найти угол между прямыми А3В3 и А4В4.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 239]