Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 965]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существуют ли такое натуральное $n$ и такой многочлен $P(x)$ степени $n$, имеющий $n$ различных действительных корней, что при всех действительных $x$ выполнено равенство
а) $P(x)P(x+1)=P(x^2)$;
б) $P(x)P(x+1)=P(x^2+1)$?
|
|
Сложность: 4 Классы: 7,8,9,10
|
Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между
его концами четное число вершин, и в синий – в противном
случае (в частности, все стороны 100-угольника красные).
В вершинах расставили числа, сумма квадратов которых
равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?
|
|
Сложность: 4 Классы: 10,11
|
Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)
|
|
Сложность: 4 Классы: 9,10,11
|
Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько
из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 965]