ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя и Вася по очереди проводят дороги на плоскости, начинает Петя. Дорога — это горизонтальная или вертикальная прямая, по которой можно двигаться только в одну сторону (выбранную при создании дороги). Всегда ли Вася может действовать так, чтобы после любого его хода можно было проехать по правилам от любого перекрёстка дорог до любого другого, как бы ни действовал Петя?

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 416]      



Задача 115998

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Докажите, что ни при каких натуральных значениях x и y число  x8x7y + x6y² – ... – xy7 + y8  не является простым.

Прислать комментарий     Решение

Задача 116012

Темы:   [ Тождественные преобразования ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что  5(а – 1) = b + a².  Сравните числа а и b.

Прислать комментарий     Решение

Задача 116014

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее натуральное n, при котором число  А = n³ + 12n² + 15n + 180  делится на 23.

Прислать комментарий     Решение

Задача 116740

Темы:   [ Разложение на множители ]
[ Перебор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Для чисел а, b и с, отличных от нуля, выполняется равенство:  a²(b + c – a) = b²(c + a – b) = c²(a + b – c).   Следует ли из этого, что  а = b = c?

Прислать комментарий     Решение

Задача 31307

Тема:   [ Разложение на множители ]
Сложность: 3+
Классы: 6,7,8

Разложить на множители выражение $x^3 + y^3 + z^3 - 3 x y z$.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .